
Optimizing Parallel Graph Connectivity Computation via Subgraph Sampling

Michael Sutton
Department of Computer Science

The Hebrew University of Jerusalem
Email: msutton@cs.huji.ac.il

Tal Ben-Nun
Department of Computer Science

ETH Zurich
Email: talbn@inf.ethz.ch

Amnon Barak
Department of Computer Science

The Hebrew University of Jerusalem
Jerusalem 91904, Israel

Abstract—Connected component identification is a funda-
mental problem in graph analytics, serving as a basis for
subsequent computations in a wide range of applications.
To determine connectivity, several parallel algorithms, whose
complexity is proportional to the number of edges or graph
diameter, have been proposed. However, an optimal algorithm
may extract graph components by working proportionally to
the number of vertices, which can be orders of magnitude lower
than the number of edges. We propose Afforest: an extension
of the Shiloach-Vishkin connected components algorithm that
approaches optimal work efficiency by processing subgraphs
in each iteration. We prove the convergence of the algorithm,
analyze its work efficiency characteristics, and provide further
techniques to speed up processing graphs containing a huge
component. Designed with modern parallel architectures in
mind, we show that the algorithm exhibits higher memory
locality than existing methods. Using both synthetic and real-
world graphs, we demonstrate that Afforest achieves speedups
of up to 67x over the state-of-the-art on multi-core CPUs
(Broadwell, POWER8) and up to 23x on GPUs (Pascal).

Keywords-Connected Components; Parallel Algorithms;
Graph Algorithms;

I. INTRODUCTION

Large-scale data processing in many fields frequently
requires working with graph structures. One of the basic
building blocks in graph processing is identifying the Con-
nected Components (CC) of a given graph G = (V,E), used
as the entry point for many computations.

Several approaches for solving the CC problem have
been proposed, including graph traversal [1], Min-Label
Propagation (LP) [2], the Shiloach-Vishkin (SV) algorithm
[3], and others [4]. While the approaches are inherently
different from one another, they ultimately traverse the entire
graph, processing all edges once, or even several times.
However, in order to compute the CCs of the graph, it is
not necessary to traverse all the edges, since one path is
enough to conclude connectivity. Rather, the optimal work
should be proportional to the number of vertices, which may
be orders of magnitude lower than the number of edges.

In this paper, we attempt to increase the work efficiency
of parallel CC by restructuring and extending the Shiloach-
Vishkin algorithm. The proposed parallel algorithm, named
Afforest1, modifies the convergence logic so that it can be

1Available online at https://www.github.com/michaelsutton/afforest

efficiently applied on subgraphs separately. This property
is then used to approximate components using sampled
subgraphs, thereby decreasing redundant edge processing
while still obtaining the exact solution.

We perform a comprehensive analysis of Afforest, using
theoretical models and empirical results. In particular, we
show that the algorithm can perform most of the component
identification with work proportional to |V | alone, whereas
the remainder can be obtained with O(|V |) to O(|E|) com-
plexity, depending on graph topology. The empirical results
depict the characteristics of the algorithm, showing that the
memory access pattern is geared towards modern parallel
architectures, and that the majority of the work completes
after a small constant number of subgraph iterations.

To demonstrate the performance of Afforest, we measure
its running time on various synthetic and real-world data,
including random graphs, road maps, web graphs, and large-
scale social networks. We show that the performance gain
of Afforest is consistent between three different shared-
memory multi-core architectures: Intel Broadwell CPUs,
IBM POWER8 CPUs, and NVIDIA Pascal GPUs.

The contributions of this paper are as follows:
• We introduce Afforest: an extension of the Shiloach-

Vishkin algorithm, optimized for modern parallel ar-
chitectures.

• We prove the convergence of Afforest and provide in-
depth analysis of its work-efficiency.

• We show how subgraph sampling dramatically de-
creases the number of edges processed in graphs con-
taining a huge component.

• Results are shown on three architectures, demonstrating
up to 67× speedup over current state-of-the-art.

II. CONNECTED COMPONENTS ALGORITHMS

A. Statement of the Problem

A correct solution to the CC problem on an undirected
graph G involves assigning each vertex a label ` s.t. if there
exists a path between two vertices u, v ∈ V , then `(u) =
`(v). Notations used in this paper can be found in Table I.

The prominent algorithms for solving the CC problem
can be roughly categorized into two approaches: (a) tree-
hooking, where an auxiliary data structure representing in-

https://www.github.com/michaelsutton/afforest

Table I: Definitions and Notations

Symbol Description
D Diameter of graph G = (V,E).
C Number of connected components in G.
ci Set of vertices in component i in V .
cmax Largest component in G (argmaxi |ci|).
`(u) Final component label of vertex u.
N (u) Neighborhood of u, i.e., all vertices v s.t.

(u, v) ∈ E.

termediate component trees (commonly named π) is itera-
tively updated as the graph is processed; and (b) traversal,
where component labels are propagated by visiting vertex
neighbors (either BFS or DFS). We note that the latter
approach exhibits higher work efficiency, as each edge is
visited exactly once during the algorithm.

B. Parallel CC Algorithms

Min-Label Propagation (LP) [2], [5] is a parallel mod-
ification to sequential graph traversal, where labels are
propagated between all vertices in parallel. Each vertex is
initialized with a unique label, and propagation begins in
parallel following a minimum-label conflict resolution rule.
The algorithm proceeds in iterations until no changes are
made. The overall work done by LP is O(D · |E|). Data-
driven [6] approaches for LP reduce the amount of work
performed in each iteration, at the cost of maintaining a
frontier of active vertices. LP is known for its scalability
in distributed-memory environments [2], as it only requires
size-1 vertex halos to compute. On the other hand, the
algorithm highly depends on the graph diameter, since
each “winning” label must be propagated through all paths
between connected vertices.

In BFS-CC, connected components are identified by prop-
agating in parallel from a single root vertex until an entire
component is visited, sequentially traversing components
until no vertices remain unvisited. Unlike LP, BFS does not
require conflict resolution, at the expense of serialization
between components. In cases where the graph has a low
diameter and a limited number of large components, the
amount of potential parallelism in BFS-CC is high, and
this approach proves to be highly efficient. Moreover, the
direction-optimizing variant of BFS [1], [7] (DOBFS-CC)
may avoid processing edges by performing “bottom-up”
searches, reducing the work to be sub-linear in |E|.

Shiloach and Vishkin (SV) [3] introduced the original
tree-hooking parallel algorithm for CC based on two oper-
ations: hook and shortcut. Rather than propagating values
through the graph, SV transforms the input graph into trees,
iteratively connecting those trees and reducing their depth.
The algorithm converges when the graph is converted into
a forest of depth-one trees, each representing a different
component. The root of each such tree can then be viewed as

procedure Shiloach-Vishkin(V,E):
1: for all v ∈ V : π(v)← v
2: hooking ← true
3: while hooking do
4: hooking ← false
5: for all u ∈ V do in parallel
6: for all v ∈ N (u) do in parallel
7: if π(u) < π(v) and
π(v) = π(π(v)) then

8: π(π(v))← π(u) . hook phase
9: hooking ← true

10: end if
11: end for
12: end for
13: for all v ∈ V do in parallel
14: while π(π(v)) 6= π(v) do
15: π(v)← π(π(v)) . shortcut phase
16: end while
17: end for
18: end while
19: return π

Figure 1: Shiloach-Vishkin Algorithm

the resulting unique component label. Under PRAM model-
ing, SV admits a best-time complexity of O(log(|V |) with
|V |+ 2|E| processors and total work of O(log(|V |) · |E|).

Fig. 1 lists the SV algorithm, as implemented by [8],
[9]. The vector π represents parent-pointing trees, and is
initialized to |V | self-pointing trees (line 1). During the hook
phase (line 8), various neighbor edges of v may compete on
the assignment π(π(v)) ← π(u), each with a different u,
but only one succeeds at each iteration. Since hooking is
followed by tree compression (shortcut, line 15), eventually
all competing edges hook, after which SV converges.

To summarize, as opposed to sequential algorithms, which
perform work linear in |E|, both the SV and LP algorithms
perform super-linear work in |E|, depending on log(|V |)
or the diameter D, respectively. BFS-CC and DOBFS-
CC, on the other hand, maintain linear work efficiency in
their parallel counterparts with the disadvantage of limited
parallelism.

III. AFFOREST: CORE ALGORITHM

While SV is highly amenable to parallelism, and works
well in theory independently of graph topology, the original
formulation may not be well-suited for modern hardware,
as its design heavily relies on the PRAM model and the
existence of O(|E| + |V |) processors. In this section, we
introduce the core of the Afforest algorithm, which extends
and restructures the Shiloach-Vishkin (SV) algorithm for
contemporary processors, and prove its convergence.

4

8

5

6

7

1

2

9

3

10

1

1

2

2

3

(a) Link Edge (6,10)

4

8

5

6

4

8

5

6

(b) Compress

Figure 2: Link and Compress Illustrations

As in SV, Afforest connects trees and compresses them
in successive order. However, in contrast to the original al-
gorithm, the control flow and convergence logic are handled
locally by the processor at each edge, so as to avoid iterating
over the same edge multiple times.

The link procedure is portrayed in Fig. 2a and imple-
mented in Fig. 3. Given an edge (u, v), link ensures that
u and v are within the same component tree in π, or
connects them otherwise. As opposed to SV, overriding
concurrent work is avoided by using atomic compare-and-
swap conditional writing operations, as proposed in [10].

The procedure searches for the tree root with the higher
index, and attempts to connect it to the other tree (if it is not
already connected). In Fig. 2a, we see the process of linking
the edge (6, 10) over trees in π. As with hook (Fig. 1, line
8), the process begins by walking up one parent from both u
and v. However, while hook would defer the connection to
next iteration (since vertex 9 is pointing to another parent),
the link procedure will continue its search, “jumping” up
until reaching the root (vertex 4).

Applying link on all edges (u, v) ∈ E results in a single
tree representing each component. From this point, the CC
problem can be solved by running compress (Fig. 2b) on the
resulting trees once to create C depth-one trees. Below, we
prove these properties.

A. Proof of Convergence

For ease of notation, we define the ith ancestor in π as:

π(i) (x) ≡ π(. . . π︸ ︷︷ ︸
i times

(x)).

An N -cycle in π is a set of unique vertices {x1, . . . , xN}
s.t.

π (xi) =

{
xi+1 1 ≤ i < N

x1 i = N
;

and therefore
∀i : π(N) (xi) = xi.

We proceed to define a condition that must always hold
for the correctness of our algorithm:

procedure link(edge (u, v) , π):
1: p1 ← π (u)
2: p2 ← π (v)
3: while p1 6= p2 do
4: h← max {p1, p2}
5: l← min {p1, p2}
6: if compare and swap (π (h) , h, l) then
7: return
8: end if
9: p1 ← π (π (h))

10: p2 ← π (l)
11: end while

procedure compress(v, π):
1: while π(π(v)) 6= π(v) do
2: π(v)← π(π(v))
3: end while

Figure 3: Link and Compress Procedures

Invariant 1. π (x) ≤ x
Lemma 1. If Invariant 1 holds, there are no N -cycles in π
for N ≥ 2.

Proof: Assume there exists an N -cycle with the set
{x1, . . . , xN} and N ≥ 2. According to the invariant, and
since elements in the cycle are unique, for any 1 ≤ i < N
it holds that π (xi) = xi+1 < xi, and so xN < x1. On the
other hand, by the definition of a cycle we have π (xN) =
x1, thus, we reach a contradiction.

Lemma 2. If Invariant 1 is true, then it remains true after
applying the link or compress procedures.

Proof: Observe that the only modification to π in link
occurs in line 6, which sets π (h) to l if the compare-and-
swap (CAS) operation succeeded. Since l = min {p1, p2} ≤
max {p1, p2} = h, the invariant holds. In the compress pro-
cedure, if ∀x : π(x) ≤ x, it follows that ∀x : π(π(x)) ≤ x,
so the argument trivially holds for the assignment π(v) ←
π(π(v)) in line 2.

Lemma 3. At any stage of the execution, h and l in link
represent ancestors of u and v. Namely, either h is an
ancestor of u and l is an ancestor of v, or vice versa.

Proof: p1 and p2 are initially assigned to direct parents
of u and v respectively (lines 1–2). Then, l holds the lower
index from {p1, p2}, h holds the higher index (lines 4–5),
and p1, p2 are again assigned with ancestors of l and h (lines
9–10). This means that p1 and p2 each preserve an ancestor
relation to either u or v.

Lemma 4. In link(u, v, π), for any u′, v′ ∈ V , if u′ and v′

are within the same component tree, they will remain in it.

Proof: If u′ and v′ are in the same tree, they share a
common ancestor, i.e., ∃I,J : π(I) (u′) = π(J) (v′). The only
write to π occurs during the CAS operation in line 6, which
only modifies roots (due to swap condition), so for every
i ≤ I and j ≤ J , π(i) (u′) and π(j) (v′) will not change
throughout the invocation. Thus, the common ancestor, as
well as the path to it, will remain unchanged as multiple
processors modify π.

Lemma 5. If u and v are not within the same component
tree, the call link(u, v, π) will ensure both trees are merged.

Proof: As long as u and v are not in the same tree, line
3 in link would always be evaluated to true (i.e., the loop
will not exit). Given that in each iteration the parents of u
and v are both traversed, and that there are no cycles (due
to Lemmas 1, 2), a root h s.t. h = π(h) and h ≥ l will be
reached at some point.

In this stage, there are three cases to consider:
1) h remains a root and this processor succeeds in the

CAS operation: h and l are now directly connected,
and by Lemma 3 they represent u and v, which will
now be connected.

2) Another processor connects h to the tree that l is
located in, i.e., ∃i,j : π(i) (h) = π(j) (l). In this case,
Lemma 4 holds for h and l, which are ancestors of u
and v by Lemma 3.

3) Another processor connects h to vertex l′, where l
and l′ do not reside in the same tree (∀i,j : π(i) (l) 6=
π(j) (l′)). In this case, the replacement induces π(h) =
l′, and a root h′ with h′ ≥ l must exist. Thus, link will
traverse up from h and l toward h′, leading back to
the initial conditions of Lemma 5. Since the number
of component trees is finite and there are no cycles
in π, there is a limit on the number of such unique l′

vertices, and thus case (3) cannot repeat indefinitely.

Theorem 1. Initializing π with π(v) = v, followed by
applying link on each (u, v) ∈ E in parallel, results in
a single tree for each connected component in the graph.

Proof: Invariant 1 initially holds since ∀v : π(v) = v ≤
v. When applying link over an edge (u, v), Lemma 4 states
that u and v will remain in the same tree if they are already
in one, whereas in the other case, Lemma 5 states that link
will merge the two component trees.

To complete the proof, we must ensure that for every
u′, v′ ∈ V , if there is a path between u′ and v′, then they
reside in the same tree, namely: ∃i,j : π(i)(u′) = π(j)(v′).
Observe that by definition, if u′ and v′ are connected, then
there exists a list of edges in E that constitutes this path.
Thus, if all edges in this path are processed by link, the
corresponding trees will merge, and the condition holds.

Theorem 2. Applying compress on every v ∈ V in parallel
reduces all trees to single-level depth and does not affect
tree connectivity.

Proof: Let π′ represent the state of π before the
compress call. For a vertex v at tree depth d, its path to
the root is defined by the sequence {π′(i)(v)}di=1. At each
iteration i of the while loop (compress, line 2), π(v) is
modified from π′(i)(v) to π′(i+1)(v), until reaching the root
π′(d)(v). At this point, the exit condition π(π(v)) = π(v)
for the self-pointing root holds, and the depth of v is reduced
to one. Since for each vertex v the root is not modified, it
follows that tree connectivity is preserved.

Observe that there are no write conflicts, since each
processor writes exclusively to π(v). However, another
processor may own a node u in the path to the root of v
(u = π′(i)(v) for some 1 ≤ i ≤ d). In this case, π(u) may
be modified to π′(j)(u) = π′(i+j)(v) (for iteration j of u) as
it is read in line 2. Two cases exist for the value read by the
processor of v: π′(i+j)(v), and π′(i+j−1)(v). In either case,
the path to the root is unchanged, only shortened.

B. Subgraph Processing

Since link ensures that each processed edge corresponds
to the same component tree, it is possible to iterate over E
in any order, without having to reprocess edges. Thus, the
graph can be partitioned to disjoint edge subsets (subgraphs)
and processed independently.

Repeatedly applying link over subgraphs, however, may
increase the depth of component trees with each tree merge,
making subsequent link calls more costly. To overcome this
issue, compress operations can be interleaved between link
phases. By applying tree compression, the depth of each
component tree is reduced to one, increasing the efficiency of
subsequent links. By the idempotent definition of compress
(Lemma 2, Theorem 2), interleaving such rounds between
link phases does not modify the result of the algorithm.

As we shall show, the order of the edges and their parti-
tioning into subgraphs can adversely affect the behavior of
Afforest. In the following sections, we analyze and explore
various such partitioning strategies, and demonstrate how
they can be used to increase the work efficiency of CC
identification.

IV. SUBGRAPH SAMPLING

In this section, we show that by first processing a certain
subset of O(|V |) edges, it is possible to dramatically de-
crease the number of edges traversed, while still obtaining
the exact solution to the CC problem.

A. Spanning Forests

We use the equivalent problem of finding a spanning
forest (SF) of a graph to reason about the number of edges
required for CC identification. We say that a subgraph of
G preserves connectivity, if every two vertices u, v ∈ V

connected by a path in G remain connected in the subgraph.
Similarly, a subgraph partially preserves connectivity if for
every component ci, Θ(|ci|) vertices remain connected in
the subgraph.

A spanning tree of a connected component ci ⊆ V is
a subset of E that represents a tree subgraph of G, which
includes all vertices v ∈ ci. A SF of G is the union of such
spanning trees for each connected component in the graph.
The size of each spanning tree is therefore |ci| − 1, and the
overall number of edges of the SF is |V |−C, where C is the
total number of components (see Table I). A SF subgraph
preserves connectivity of G, since all vertices within each
component ci remain connected within the corresponding
spanning tree.

There is a dual relation between finding the CCs of a
graph and determining a spanning forest. For instance, tree-
hooking CC algorithms can be used to find a SF by tracking
the edges contributing a tree merge during the execution,
effectively omitting all edges that form cycles. In the other
direction, for finding the CCs of the graph, it is sufficient
to only process a SF of the graph to achieve correct CC
labeling, since the SF preserves connectivity.

B. Uniform Edge Sampling

We now show how for certain families of input graphs, a
random subgraph with O(|V |) edges can be sampled, such
that connectivity is partially preserved.

Let G′ be a connected (single-component) d-regular graph
with n vertices and m edges. Let G′p be a random subgraph
obtained from G′ by independently sampling edges with a
probability of p. Frieze et al. [11] proved that under mild
conditions for G′, if p ≥ 1+ε

d for some ε > 0, then G′p
contains a connected component of size Θ(n) almost surely
as n increases.

Claim 1. For p = 1+ε
d , the expected number of edges in G′p

is O(n).

Proof: By definition m = d
2n. Since each edge in G′p

is sampled with probability p = 1+ε
d , the expected number

of edges in G′p is p ·m = 1+ε
2 n = O(n).

Generalizing to a d-regular graph G with multiple compo-
nents, Claim 1 can be applied to obtain a random subgraph
with partially preserved connectivity and O(|V |) edges.

Unlike regular graphs, in general graphs with arbitrary
degree distributions, uniformly sampling random edges from
E creates a bias towards vertices with higher degree. This
is undesirable, as the only edge of a degree-one vertex is
surely included in any SF.

C. Vertex Neighbor Sampling

In this paper we present a sampling method for general
graphs. Rather than sampling each edge with equal probabil-
ity, our method prioritizes edges that connect vertices with

lower degrees, up to a point where an edge connecting a
degree-one vertex is always selected.

Specifically, we use a random sampling method based on
vertex neighborhood, in which a fixed number of random
edges are selected for each vertex. This way, the O(|V |)
random edges are equally distributed across vertices and
components of the graph. In Section V-B we show that the
resulting subgraph covers larger portions of each component.
We also show that in the context of CC, processing this
subgraph first can speed up the convergence rate of the
Afforest algorithm, as well as reduce the overall number
of processed edges.

D. Large Component Skipping
Afforest traverses graph edges via vertex neighborhoods,

i.e., for each u ∈ V , the set {(u, v) : v ∈ N (u)} is pro-
cessed. As a result, each unordered edge is accessed twice,
once from each direction. Since link only needs to be applied
on each edge once (Theorem 1), this redundancy can be
utilized for the following theorem:

Theorem 3. At a certain point after applying link on
a subset of E, fix a single tree c in π representing an
intermediate component. Then, for each u ∈ c, the set
{(u, v) : v ∈ N (u)} can be skipped, that is, not processed
by link, and Theorem 1 will still hold.

Proof: Let (u, v) be an unprocessed edge. If u, v ∈ c,
the edge is redundant and would not modify π, and can thus
be skipped. If w.l.o.g. u ∈ c, v /∈ c, then the edge (v, u)
will be accessed from v’s neighborhood since u ∈ N (v).
Otherwise, both u, v /∈ c and thus remain unaffected.

Using the above theorem, a natural choice for an interme-
diate component to skip is the largest identified component.
Typical large-scale real-world graphs [12], [13], [14] com-
prise one large component (cmax), covering >90% of the
vertices, and a multitude of small components. By skipping
the largest intermediate component, many edges can be
omitted. This process is illustrated in Fig. 4.

Sampled

Processed

Skipped

Figure 4: Subgraph Sampling for Connectivity Computation

We note that identifying the largest intermediate compo-
nent in π is an O(|V |) task. However, since any component
can be chosen to be skipped, it is sufficient to estimate the
largest one, e.g., using probabilistic methods, rather than
obtaining it exactly.

procedure Afforest(V,E, neighbor rounds):
1: for all v ∈ V : π(v)← v
2: for i← 1 to neighbor rounds do
3: for all {v ∈ V : i ≤ |N (v)|} do in parallel
4: link(v,N (v)i , π)
5: end for
6: for all v ∈ V do in parallel
7: compress(v, π)
8: end for
9: end for

10: c← most frequent element(π)
11: for all {v ∈ V : π(v) 6= c} do in parallel
12: for i ← neighbor rounds + 1 to |N (v)| do

in parallel
13: link(v,N (v)i , π)
14: end for
15: end for
16: for all v ∈ V do in parallel
17: compress(v, π)
18: end for
19: return π

Figure 5: Afforest Algorithm with Subgraph Sampling

E. Afforest with Subgraph Sampling

In order to maximize work-efficiency in the average case,
neighbor sampling and large component skipping can be
combined. Neighbor sampling can link most of the trees
in the first iterations, after which a large intermediate com-
ponent can be identified and skipped.

Based on the two above optimizations, we present the final
Afforest algorithm in Fig. 5. As in SV, the algorithm begins
by initializing all vertices to self-pointing, single-node trees
(line 1). The algorithm proceeds by applying link neighbor
rounds to each vertex (line 4), each of which followed by
a compress phase (line 7) for speeding up the following
link rounds. Upon identifying intermediate components, the
algorithm performs a probabilistic search for determining
the largest identified component (line 10). The search is
performed by randomly sampling π a constant number of
times and finding the most referenced value. This relies on
the fact that all trees are depth-1 (owing to compress in line
7). The algorithm then executes a full link over the remaining
edges, skipping the largest component (line 11), followed by
applying compress to finalize convergence (lines 16-18).

V. MODELING AND ANALYSIS

In this section, we break down and analyze Afforest using
both theoretical complexity bounds and empirical results. In
particular, we show that while it is possible to construct
worst-case (however unlikely) scenarios, Afforest exhibits

Table II: Average-Case Work of SV and Afforest

Graph Shiloach-Vishkin Afforest
Iterations Max. Depth Avg. Iter. Max. Depth

kron 4 17 1.02 16
urand 4 29 1.19 30
web 6 24 1.01 25
twitter 4 11 1.00 14
road 9 77 1.15 126
osm-eur 9 638 1.13 754

several properties that allow it to perform competitively in
the average case.

A. Core Algorithm Complexity

As described in Section III, Afforest’s core is comprised
of two procedures: link and compress. To analyze their upper
bound, we consider worst-case hypothetical scenarios, which
coincide both in graph structure and adversarial edge order.
It is worth noting that unlike BFS-based algorithms, whose
worst cases are determined by D, the constructed cases do
not commonly occur in real-world graphs.

For the link procedure, one can construct a worst case
of linear O(|V |) work performed during linking a single
edge. For instance, consider an input graph containing a
depth-one tree, where the tree’s root has the highest index.
In an adversarial edge order, all leaf vertices will succeed
connecting to the root in descending indices, so the lowest
index vertex will have to walk up a linear |V | depth tree
before becoming the new root.

As for compress, it is possible to construct a similar worst-
case scenario in which every processor traverses and com-
presses a tree with linear depth, bounding the complexity of
the first invocation by O(|V |2).

In the original SV algorithm, an additional step was added
at each iteration to avoid such scenarios. However, more
recent formulations [8] and implementations [9], [15] of SV
omit this step because of its implementation complexity and
its high unlikeliness. Regardless, in the average case, the
expected number of iterations in SV is ∼D/2 [16].

Table II compares the number of iterations and maximal
tree depth of SV with the average iterations and maximal
tree depth in Afforest (without large component skipping),
using real-world and synthetic graphs (listed in Table III).
The table shows that in practice, the component tree depth
in link is close to the depth of the trees in SV, even
though link performs unbounded traversal on the component
tree. Additionally, the average number of local (per-edge)
iterations in Afforest is close to one, whereas in SV it
varies. This suggests that most of the edge-processing work
is performed on trees that have already converged, running
a single local iteration of link for validation.

B. Convergence Analysis

The convergence of tree-hooking CC algorithms (a-la SV)
can be characterized by the number of tree connections

0 20 40 60 80 100
Work [%]

0.0

0.2

0.4

0.6

0.8

1.0

L
in

ka
ge

2|V|

CSR-rows Random Neighbor Optimal

(a) Linkage

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Work [%]

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e

2|V|

CSR-rows Random Neighbor Optimal

(b) Coverage

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Avg. Degree

100

101

T
im

e
[s

ec
]

Shiloach-Vishkin

Afforest

DOBFS-CC

LP

(c) Performance w.r.t. Average Degree

Figure 6: Afforest Convergence Breakdown w.r.t. Partitioning Strategy and Graph Properties

achieved in each iteration. Below, we define two measures to
evaluate the rate of convergence of such algorithms: Linkage,
and Coverage.

Let Tt denote the number of trees in π after iteration t.
Since the algorithm begins with self-pointing trees, T0 =
|V |. We also note that Tt is monotonically decreasing, with
T∞ = C (after convergence). We can therefore define the
ratio of trees connected following iteration t as:

Linkage (t) :=
|V | − Tt
|V | − C .

Second, given the ubiquity of giant components in graphs,
we define the coverage measure as the largest fraction of
cmax already belonging to a single tree at step t:

Coverage (t) :=
τ
(t)
max

|cmax|
,

where τ
(t)
i is the number of vertices in tree i at iteration

t and τmax corresponds to the largest identified portion
of cmax. This measure is important for understanding the
earliest iteration in which component skip should be applied.

Using these two measures, we empirically evaluate the
convergence properties of Afforest w.r.t. various subgraph
partitioning strategies, as discussed in Section IV. Figures
6a and 6b plot the linkage and coverage measures during
the runtime of the web graph (see Table III for details),
which exhibits the slowest convergence rate in our measured
dataset. The figures compare between four different parti-
tioning strategies: row sampling, which partitions the graph’s
adjacency matrix by rows; random edge sampling with an
increasing probability p; neighbor sampling, proposed in
Section IV-C; and optimal subgraphs, as given by sampling
a spanning forest. In the figures, the Y axis depicts the
measure, whereas the X axis denotes the percentage of
processed edges. Since Afforest processes each edge once,
convergence is ensured after an X value of 100.

Both figures clearly illustrate the effectiveness of the
neighbor sampling approach over the other strategies, at-
taining close-to-optimal convergence rate. After only two
neighbor rounds, this strategy achieves ∼83% linkage and
∼80% coverage, vastly outperforming the other methods.

Additionally, observe that adjacency matrix row sampling
attains the slowest rate of convergence. This behavior is
consistent with the other tested graphs.

To illustrate that the effectiveness of neighbor sampling
is agnostic to vertex degree, we generate Kronecker graphs
with varying average degrees and plot their runtime in Fig.
6c using SV, Label Propagation (LP), DOBFS and Afforest.
The figure shows that while the runtime of SV and LP
correlates with the average degree, DOBFS exhibits an
inverse relation, confirming previous experiments [7]; and
Afforest remains largely unaffected. The correlation (in SV
and LP) and lack thereof (in Afforest) is a direct result of
the existence of edges that do not contribute to component
identification, promoting the use of sophisticated sampling
for CC identification.

C. Memory Access Pattern

Another motivating reason behind the definition of Affor-
est is improving memory locality and reducing contention in
CC identification. In order to visualize these characteristics,
we run SV and Afforest on a urand graph, plotting the
memory access density and per-thread distribution in Fig. 7.
Note that while the generated graph is small (|V | = 212,
|E| = 216) to accommodate for large log-file sizes, accesses
behave similarly for larger graphs with the same structure.

Specifically, Figures 7a, 7b and 7c present the memory ac-
cess pattern of the parent component array π on SV, Afforest
without component skipping, and Afforest, respectively. The
top part of the figures shows heat-maps depicting the number
of times a certain address has been accessed. In the bottom
part of the figures, scatter-plots depict which thread has
accessed the memory. This part also shows the stages of the
algorithms (I=Initialization, L=Link, C=Compress, F=Find
Largest Component, H=Hook).

From the figures it can be seen that the neighbor rounds
in Afforest (first two links) generate sequential memory
accesses evenly distributed across threads, and accesses with
high locality near the beginning of π (corresponding to tree
roots). We also see that finding the largest component to skip
incurs a small overhead for random sampling of π, however,
the accesses that result from this process are structured.

(a) Shiloach-Vishkin (b) Afforest (without skipping) (c) Afforest

Figure 7: Memory Access Pattern of π on urand (best viewed in color)

In contrast to the structured access of Afforest, SV ex-
hibits seemingly random access in hook, evenly distributed
in π. This is a result of all edges being processed at each
iteration of SV, so the total accesses to π in each iteration
is higher. Additionally, in SV edges compete on tree hooks,
thereby requiring multiple accesses to the same address.

VI. PERFORMANCE EVALUATION

This section evaluates the performance of Afforest on
several graph datasets and hardware platforms.

The CPU version of Afforest is compared with the GAP
Benchmark Suite [9], which contains state-of-the-art op-
timized CPU implementations of the BFS, DOBFS, and
SV algorithms. The GPU implementation of Afforest is
compared with the highly tuned, edge list-based SV code
by Soman et al. [15]. We also compare the results with our
own implementations of CPU Label Propagation and GPU
CSR-based SV.

Our experimental setup consists of two different nodes.
The first is a 2×10-core Intel Xeon E5-2630 v4 server
(Broadwell architecture, SMT disabled) with 64 GB RAM
and an NVIDIA Tesla P100 SXM2 16 GB GPU (Pascal
architecture); and the second is a 2×10-core IBM POWER8
server (16-way SMT) with 256 GB RAM. All results report
the median running time using the default configuration
parameters over 16 measurements if the runtime is below
20 minutes, and the median of 3 measurements otherwise.
Unless specified otherwise, the full number of cores is
exclusively used for the algorithms.

Table III lists the evaluated graphs and their statistics. The
datasets represent different types of graphs, including low-
degree high-diameter road maps, large-scale social networks,
locally-connected web graphs, and high-degree synthetic
random and Kronecker graphs. For the synthetic graphs, we
use the sizes defined by the GAP benchmark. Since these

Table III: Graph Properties

Name Vertices Edges Avg. Connected Size
Degree Components (GB)

Road Maps
road [17] 24M 58M 2.41 2 806MB
osm-eur [18] 174M 348M 2.00 2 2.7GB

Social Networks
twitter [19] 61.6M 1,468.4M 23.8 19.9M 12GB

Web
web [20] 50.6M 1,949.4M 38.1 123 16GB

Synthetic Graphs
kron 134.2M 2,111.6M 15.73 71.1M 17GB
urand 134.2M 2,147.4M 16 1 17GB
kron-gpu 67.1M 1,567.7M 23.36 30.9M 13GB
urand-gpu 67.1M 1,610.6M 24 1 13GB

sizes are too large for the GPU RAM, the two datasets
(kron-gpu, urand-gpu) are used there instead.

A. Implementation Details

Our CPU implementation of Afforest is derived from the
SV implementation found in GAP, as it is the state-of-the-art.
As in GAP, C++14 and OpenMP are used for multi-threading
and atomic operations, and the CSR matrix format is used
for graph representation.

The GPU variant of Afforest is implemented over CUDA,
using the Groute [21] framework for CSR accesses and intra
thread-block load-balancing. These features are beneficial
for unbalanced graphs, especially in the final link phase.

Based on the analysis in Section V, we set the value of
neighbor rounds in the Afforest algorithm (Fig. 5) to 2. For
random neighbor sampling, we use the graph file structure
by choosing the first appearing neighbors of each vertex.
This choice is beneficial since the processed edges can be
easily tracked to avoid reprocessing.

kron osm-eur road twitter urand web
Dataset

10−2

10−1

100

101

102

103

T
im

e
[s

ec
]

Architecture = Broadwell CPU

SV LP BFS DOBFS Afforest

kron osm-eur road twitter urand web
Dataset

Architecture = POWER8 CPU

SV LP BFS DOBFS Afforest

kron osm-eur road twitter urand web
Dataset

O
.O

.M
.

Architecture = Pascal GPU

SV Soman et al. Afforest

(a) Performance

2 4 6 8 10 12 14 16 18 20
Cores

100

101

T
im

e
[s

ec
]

Shiloach-Vishkin

Afforest (without component skip)

DOBFS-CC

Afforest

(b) Strong Scaling (Broadwell) on web

10−310−210−1100101102

Average Component Fraction [%]

100

101

102

T
im

e
[s

ec
]

Shiloach-Vishkin

Afforest (without component skip)

DOBFS-CC

Afforest

(c) Performance w.r.t. Component Size on urand

Figure 8: Afforest Performance

B. Performance and Scaling

Fig. 8a summarizes the performance of Afforest on all
three architectures, where the error-bars indicate the 25th
and 75th percentiles of all runs. Overall, Afforest admits
speedups of 2.49–67.24× over Shiloach-Vishkin, and be-
tween 0.47× slowdown and 365.97× speedup over the state-
of-the-art (non-SV), with a geometric mean of 4.99× over
all architectures. The instances where Afforest is slower are
observed in urand vs. DOBFS, and are due to the low-
diameter and single component found in the graph, com-
bined with DOBFS-CC’s direction-optimized processing.

Observe that the results are consistent between architec-
tures, although each processor is fundamentally different
than the others in terms of core count and memory system.
The PRAM construction of SV, combined with the increased
memory locality (Section V-C), allows Afforest to utilize
inherent parallelism and cache hierarchies more efficiently.

On the GPU, Soman et al. implement SV using edge-
lists instead of CSR matrices. Although more data is loaded,
this representation exhibits higher data-parallelism in edge-
based algorithms, trading memory access round-trips for
homogeneous-work edge streaming, which is more efficient
for GPUs. On the other hand, Afforest is CSR-based, but
balances the load by processing the same neighbor index
during each link round. For completeness, we include a
CSR-based SV implementation, which outperforms Soman
et al. in osm-eur and road. In these cases, the vertex
degrees are narrowly dispersed and thus the per-vertex load
is balanced. We note that the missing web result of Soman
et al. is due to insufficient memory on the GPU for the

edge-list representation.
The strong scaling of Afforest on the Intel CPU is com-

pared with SV and DOBFS-CC in Fig. 8b. The figure shows
that for the large-scale web graph, all algorithms attain
similar speedups over multiple cores, achieving between
4.77× and 6.15× in SV and Afforest (without component
skipping) respectively.

Overall, the results suggest that Afforest combines the best
of SV and DOBFS: for high-diameter graphs, our algorithm
efficiently compresses the graph (as in SV); whereas in high-
degree graphs with large components, Afforest is able to
defer edge processing or skip it altogether (as in DOBFS).

C. Large Components

In Fig. 8c, we study the effect of component size on
Afforest and the other algorithms. Specifically, we generate
uniformly random (urand) graphs with an additional pa-
rameter — average component fraction f ∈ (0, 1] — s.t. the
resulting graph has (in expectation) b1/fc components of
size b|V | · fc and a component with the remaining vertices.

The figure reaffirms that the work efficiency of tree-
hooking algorithms is not affected by the number of com-
ponents and their size. BFS-based CC algorithms such as
DOBFS-CC, however, inherently serialize the identification
of each component. Thus, its runtime increases linearly with
the number of components for f ≤ 10−1. On the other
hand, the direction-optimizing characteristics of DOBFS-
CC (“bottom-up” steps) enable highly efficient operation in
graphs with 1–10 large components, in which it is the fastest.

The figure also shows that like SV, Afforest is unaffected
by CC size. However, the large component skip heuristic is

beneficial for giant component graphs, for which it exhibits
performance that is competitive with DOBFS-CC.

VII. CONCLUSIONS

The paper presented a tree-hooking connected component
identification algorithm, based on the one given by Shiloach
and Vishkin [3]. The proposed algorithm exhibits higher
memory locality and enables processing in subgraph batches.
The latter property is used to introduce a set of complemen-
tary optimizations that affect subgraph choice and decrease
overall traversed edges. The evaluation suggests that the
algorithm combines advantages of tree-hooking and traversal
approaches, setting a new state-of-the art for both high-
diameter and high-degree graphs on CPUs as well as GPUs.

The research can be extended in several directions. First,
it may be possible to use insights gained from this paper
to generalize the algorithm to distributed memory environ-
ments. Second, the empirical results presented in this paper
demand more in-depth analysis into the computational com-
plexity and performance model of Afforest in the average
case, as well as for certain graph structures.

ACKNOWLEDGMENT

We thank Hussein Harake, Colin McMurtrie, and the
whole CSCS team granting access to the Greina machines,
and for their excellent technical support. This research was
supported in part by a grant from Dr. and Mrs. Silverston,
Cambridge, the UK and by the ETH Fellows postdoctoral
fellowship program.

REFERENCES

[1] G. M. Slota, S. Rajamanickam, and K. Madduri, “BFS and
coloring-based parallel algorithms for strongly connected
components and related problems,” in IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium, May
2014, pp. 550–559.

[2] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu, “Pregel
algorithms for graph connectivity problems with performance
guarantees,” Proc. VLDB Endow., vol. 7, no. 14, pp. 1821–
1832, Oct. 2014.

[3] Y. Shiloach and U. Vishkin, “An O(log n) parallel connectivity
algorithm,” J. Algorithms, vol. 3, no. 1, pp. 57–67, 1982.

[4] J. Shun, L. Dhulipala, and G. Blelloch, “A simple and
practical linear-work parallel algorithm for connectivity,” in
Proc. 26th ACM Symposium on Parallelism in Algorithms and
Architectures, ser. SPAA ’14. ACM, 2014, pp. 143–153.

[5] P. Sao, O. Green, C. Jain, and R. Vuduc, “A self-correcting
connected components algorithm,” in Proc. ACM Workshop
on Fault-Tolerance for HPC at Extreme Scale, ser. FTXS ’16.
ACM, 2016, pp. 9–16.

[6] R. Nasre, M. Burtscher, and K. Pingali, “Data-driven versus
topology-driven irregular computations on GPUs,” in Parallel
Distributed Processing (IPDPS), 2013 IEEE 27th Interna-
tional Symposium on, 2013, pp. 463–474.

[7] S. Beamer, K. Asanović, and D. Patterson, “Direction-
optimizing breadth-first search,” in Proc. International Con-
ference on High Performance Computing, Networking, Stor-
age and Analysis, ser. SC ’12. IEEE Computer Society Press,
2012, pp. 12:1–12:10.

[8] D. A. Bader, G. Cong, and J. Feo, “On the architectural
requirements for efficient execution of graph algorithms,” in
Proc. 2005 International Conference on Parallel Processing,
ser. ICPP ’05. IEEE Computer Society, 2005, pp. 547–556.

[9] S. Beamer, K. Asanovic, and D. A. Patterson, “The
GAP benchmark suite,” CoRR, vol. abs/1508.03619, 2015.
[Online]. Available: http://arxiv.org/abs/1508.03619

[10] M. Sutton, T. Ben-Nun, A. Barak, S. Pai, and K. Pingali,
“Adaptive work-efficient connected components on the
GPU,” CoRR, vol. abs/1612.01178, 2016. [Online]. Available:
http://arxiv.org/abs/1612.01178

[11] A. Frieze, M. Krivelevich, and R. Martin, “The emergence of
a giant component in random subgraphs of pseudo-random
graphs,” Random Structures & Algorithms, vol. 24, no. 1, pp.
42–50, 2004.

[12] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large
network dataset collection,” Jun. 2014. [Online]. Available:
http://snap.stanford.edu/data

[13] J. Kunegis, “KONECT: The koblenz network collection,” in
Proc. 22Nd International Conference on World Wide Web, ser.
WWW ’13. ACM, 2013, pp. 1343–1350.

[14] S. Janson, D. E. Knuth, T. Łuczak, and B. Pittel, “The birth
of the giant component,” Random Structures and Algorithms,
vol. 4, no. 3, pp. 233–358, 1993.

[15] J. Soman, K. Kothapalli, and P. J. Narayanan, “A fast GPU
algorithm for graph connectivity,” in 24th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS
2019, 2010, pp. 1–8.

[16] R. McColl, O. Green, and D. A. Bader, “A new parallel
algorithm for connected components in dynamic graphs,” in
20th Annual International Conference on High Performance
Computing, Dec 2013, pp. 246–255.

[17] “9th DIMACS Implementation Challenge.” [Online]. Avail-
able: http://www.dis.uniroma1.it/challenge9/download.shtml

[18] “Karlsruhe Institute of Technology, OSM Europe Graph,”
2014. [Online]. Available: http://i11www.iti.uni-karlsruhe.de/
resources/roadgraphs.php

[19] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi,
“Measuring user influence in Twitter: The million follower
fallacy,” ICWSM, vol. 10, no. 10-17, p. 30, 2010.

[20] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–
1:25, 2011.

[21] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute:
An asynchronous multi-gpu programming model for irregular
computations,” in Proc. 22nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP
’17. ACM, 2017, pp. 235–248.

http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1612.01178
http://snap.stanford.edu/data
http://www.dis.uniroma1.it/challenge9/download.shtml
http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php
http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php

	Introduction
	Connected Components Algorithms
	Statement of the Problem
	Parallel CC Algorithms

	Afforest: Core Algorithm
	Proof of Convergence
	Subgraph Processing

	Subgraph Sampling
	Spanning Forests
	Uniform Edge Sampling
	Vertex Neighbor Sampling
	Large Component Skipping
	Afforest with Subgraph Sampling

	Modeling and Analysis
	Core Algorithm Complexity
	Convergence Analysis
	Memory Access Pattern

	Performance evaluation
	Implementation Details
	Performance and Scaling
	Large Components

	Conclusions
	References

